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l. Introduction

This paper may be considered STEP ONE in a sequence dedicated to

solving the submersible identification problem,. Our method is based on an

approach used by Colton and Monk[6 ][7 ] for similar problems using radar

in space R~, or Rs!. Our problem is much more difficult. First we have an

index of refraction which depends, at least, on depth, and perhaps also on

range. Second our domain is not all of space but an "irregular slab". In the

first approach we shall concentrate on an ocean which is a slab of thickness

h, R<, and has a constant index of refraction, as the most disturbing aspect

of our problem appears to be the way the ocean surface interfere with the

propagation of sound.

In STEP ONE we shall concentrate on an efficient numerical scheme to

compute the far field generated by scattering a generalized plane wave oK

'This work is supported in part by Sea Grant NAS6AA-D-SG040.



an arbitrary submersible. Subsequent papers will deal with reconstruction

of the object from the far field, and how to introduce the efFect of a

variable index of refraction using transmutation theory. We shall outline

our approach to the entire problem in this introduction. The remainder

of the paper, however, shall deal only with the computational aspects of

STEP ONE.

Because of the interference of the ocean surface analytical computation

of the far field must take into account some sort of approximation scheme,

such as using parabolic approximation, which tends to destroy vertical res-

olution or using a trucated form of the modal expansion for the Green's

function   propagator!:

 ]..1!

Here the c�= [1 �  n+ 1/2!' x/kh! ] ~ are the modal eigenvalues [ 1 ].

For the case of a variable index ocean a similar expansion is available where

the modal functions P� z! and their corresponding eigenvalues may be ob-

tained through transmutation as been done by Dustin, Gilbert, Wood, and

Verma[ 8 ]. By using the propagator G r,z;p, ! �.1!, the Green's inte-

gral representation, and the asymptotic behavior of the Hankel functions,

Gilbert and Xu[ 2 ] have shown that the acoustic pressure to have the

asymptotic expansion



where

F  r, z, 8!:= P e' '"'F� z, 8!.
n=O

The modes p� z! for n ! X do not propagate, but rather decay exponen-

tially and hence do not appear in the sum �.3!. We refer to the term

Fa r, z,8!:= Q e'"'"'F�p z,8!,

as the finite-ocean far field pattern, which we also write in an array form

By the use of Green's formula it is possible to establish the identity [ 8 ]

A~D~ r!F z, 8! = . V~D~ r! j ' G x, -,  ,  !da'~,aii g, t,'!
i~k &D Ovg

where x and   are two-dimensional vectors in the range plane, and A~ is

the  N+1! x N+1! Vandermonde matrix of constant coefficients

1 1 ... 1

ikao i]a, ... iJ a�
A~ .��

 isa~!~

and D~ r! is the �V + 1! x �V + 1! diagonal matrix

ikapr ika~ r ika~ r �,5!

The array 4' x, z,  , ! is given by

ikap  X, ! ika~  x, !

This leads to the following integral representation for the far field pattern

generated by refiection off a, submersible with boundary BD



Gilbert a,nd Xu [ 2 j show that the propagating solutions therefore have a

modal representation of form

v x, z!:= Q j g z, P!P� z!e' '" "' da .0~  ! f,~.� x, ! �.8!

Equation �.8! indicates that the information received from the far-Beld

must be incomplete; consequently, the problem of trying to determine the

shape of the submersible from far field data is reaHy an ill-posed problem.

In order to extract some information it is necessary to restrict the space

of solutions somehow in order to make the problem well-posed. There are

several possibilities which seem quite promising. One possibility is to seek

the solution among all objects of a general size and shape, for example an

ellipsoid, Since the number of modes which propagate depends on the wave

number it is import to keep the wave number sufficiently high, i.e. so that

10 to 20 modes actually propagate.

One way to generate the starting field is to essentially ignore the inter-

ference from the ocean surface, This is a reasonable assumption providing

the ocean is deep enough and the source not close to either surface. In this

instance, we may assume, in the case of a constant index ocean, that the

local situation is governed by a spherical geometry, and that a, complete

family of solutions is given by

�  p.8Pj:= H�,'+,<, kp!P  cosH!e�' ~!, n = 0,1,2,..., �.9!

m = 0,+1,+2, ...,+n, wherep =  z-z~! +r, and 8 = co@ ' z/p!, H +g/z |,'!

is a spherical Hankel function and is usually denoted by h~�~  !. The start-

ing field is then written as a, finite sum of functions from the class �.9! such



that on the surface of the object the soft sound boundary condition is ap-

proxima,ted. This condition may be formulated as a minimization problem.

The approximate starting field is given in the form

u p,8, Q!:= Q Q r�h'�'  J;p!P� cosy!e" �.10!
ra=0 m= � n

In order to obtain the propagating field we must match the starting field

with a sum of the propagating modes in a, region where both approximtions

are valid, i.e. we attempt to seek the coefficients P� in the series

M

P~�cos[k� � a'�!' ' h � "!]H'  ka r!e" �.11!
m=0 m=-M

The computation of the coefficients P�and the display of the far-field,

using the asymptotic expansions for the Hankel functions, as a series

Xg M
2ei ka<" � m~/2!cos[k� g !  g «!]~1  gg r!c

v=0 m= � M

�.12!

concludes STEP ONE in our procedure.

STEP TWO

Having obtained an approximate far field pattern, for various wave num-

bers k and various z dependencies in the incident "plane waves", we may

now try to solve the inverse problem. Recall that the "plane waves" have

modal components in the z direction. If we are not considering an axially

symmetric solutions then for each modal component and for each k we use

2n+1 incoming waves with directions in the range coordinates

a~> � � [cos�' /�n+ 1!!,sin�'/�n+ 1!!], j = 0,1,2, ...,2n �.13!

Now let F�' 0 < n < X, � n < m < n be the coefficients of the spherica,l

harmonic approximation of far field pattern F' generated by the plane wave



with the direction aI . By expanding the propagating Herglotz kernels,

and the parametric representation of the submersible's surface p = f 8, P!

in terms of the surface harmnics we are led, for example, to consider a

minimization problem of the form

2 Tk 2

p F! = min  P F z,g; k, o !g z,P!dzdP
  i GAP! ~- g 8 Z1

+ f f ~T V f $8j, ,$,8!~ sin Hrl8dp!,
where

f g  4'!G x»  Od  
azJ

V p!:=

4 u+ k'n' z!u = 0. �.15!

Such a family may be generated by means of the transmutation

is the propagating  entire! Herglotz function, and T ' is the inverse trans-

formation which relates the coefficients of the starting field in spherical

coordinates to those in cylindrical coordinates. Other minimization prob-

lems might be considered instead, for example see Xu [ 9 j.

STEP THREE

In order to consider the case with an index of refraction which is depth

dependent we must mske certain alternations in STEP ONE and STEP

TWO. In STEP ONE we need to replace the complete family �.9! by

another one, which must be solutions of the depth-dependent Helmholtz

equation



where the kernel Iw z,s! satisfies the Gelfand-Levitan equation

O'I~ 82I~
� + � + k [n  z! � 1]I< = 0,
Bz 88

�.16!

and the characteristic conditions [10 ]

2 � Ii z, z! + k [n  z! � 1] = 0,
8z

�.17!

2 � I< { z, �; + 2h! + k'[n' z! � 1] = 0.
az

�,18!

The functions Q r, "! are menbers from the family �.9!, where we have

replaced the spherical coordinates  p, 8, P! by the cylindrical coordinates

 r,z, P!.

In order to obtain the propagating field we replace the modal expansion

�.11! by

�.19!

where the P� z! are the modal solutions  eigenfunctions of the separated

z-equation! for the varia,ble index n z!, and the A�are the corresponding

eigenvalues, and v�= k~ � A~. The modal solutions may be computed

by transmutation, and we have developed a Fortran program which does

exactly this. As mentioned above, the computational aspects of STEP

THREE will be reported on in a later manuscript.

2 The Propagating Solution and its Far-6eld
Pattern

Let Rb �   x, z!; x =  si zz! p R 0 < < h! be a region corresponding

to the finite depth ocean, where h is the ocean depth . Let 0 be an object



imbedded in Rb, which is a bounded, connected domain with C boundary

80 having an outward unit normal v. If the object has a sound-soft bound-

ary BA, an incoming wave u', which incident on BQ, will be scattered to

produce a scattered propagating wave u' as well as its far-field pattern.

This problem can be formulated as a Dirichlet boundary value problem for

the scattering of time-harmonic acoustic waves in 0,:= Rb   0, namely to

find a solution u C C  Rb $ 0! fl C Rb $ A! to the Helmholtz equation

Dsu+t; u =0, in Rb $6,

such that u satisfies the boundary conditions

U =0, asz=O,

Oll
� =0, asz=h,
Bz

u=0, one.

Here k is a positive constant known as the wave number, k g kh/~ � l/2,

and u = u' + u', where u' and u' are the incident  entire! wave and the

scattered wave respectively. The scattered wave has the modal representa-

tion

u' = g y� z!u'� x!,

where



and the n'" mode of u', u'� x!, satisfies the radiating condition

Bu�
lim T'  �" � ika�u'�! = 0, T =~ x ], n = 0,1, ...,oo,

BT
�.8!

This problem is uniquely solvable [4]. The further properties of the

solution can be found in [2] [3].

By the represent, ation of u', we have [3]

,8G Bu'u' x,z! = J  u' � � G !der,  x,z! E Q�� j,. a. a.

and

, BG Ou'
0 =  u' � G !der,  x,z! E 0,.

gati BV OV
 ~ 1o!

Here G -,  , ] x �   I! is the Green's function in Rz~, which has a normal

mode representation

G z, ,~ x �  ]! = � P g "," H " ka T!J  ka.T'!
=o =o Il 4'

[cos mH! cos mH'! + s iri mH!s in mH'!].

f ]=T'<T=]x

�,11!

and a ray representation

elk
+ +  z, , I x �   I!, �1~!G z   I x �   I!�

4x

where

ik



Here we denote  x, z! in cylindrical coordinates by  r,8, z!, and   ,  ! by

 r' 8' t,"!.

Recall that u = u' + u' and u ~sn � � 0, then

OG Buu x,z! = j'  u � � G � !d~
M Bv Bv

Bu
G da,  x,z! C 0�

ao Bv
�.13!

In view of the asymptotic behavior of Hankel's function and �.11! we

obis.in the asymptotic formula  Compare �.2!, �,3!!

'k 1u  x 2! = � e ' ~ P  !>e' ""f� 8, z, k! + O ~!,
2h �xka�r r~ ' �,14!

where

f� 8, z, k! = � P� z! J '  e ' ""' P�  !!der ,I' Bu    ! u.�. 
so Bp 

�,15!

x =  cas8, sin8!.

and where [aj means the largest integer   a.

2kh � ~

2'

Denote

V:= L [0, 2~] x spa~[ Pp, fy, ..., P~ j �.16!

10

we refer to the function F 8, z, k!:= Q�p f� 8, z, k! E V+ as the represen-

tation of the propagating far-field pattern of the scattered wave.



3 A Numerical Scheme to Approximate the
Starting Field

8u x, z! 8, Bu
+ 2 [ + zi ~ I x   I! + ~G z> ! I x   I!]Bp» an Bv 8v~

=2[ ' +u' x,z!]
Bu' x, z!

�.1!

The Green's function G can be represented as either �.11! or �.12!.

By using a numerical integration scheme, we can solve this integral

equation for a� " to obtain a numerical print-out of  '2.13! and �,15!. How-

ever, it is not difficult to see that this calculation is too time consuming

to be practical . A more effiicient numerical scheme is desirable. This may

11

In order to detect the shape of a, submersed object in a finite-depth ocean,

we might bounce a "plane" wave off of it and then measure the wave scat-

tered by the object. From these measurements we can reconstruct, the

shape of the object. For this purpose, we need to find efficient numerical

procedures to construct a far-field pattern with respect to a given object

and a given incoming waves. A problem in this approach is that the scat-

tered acoustic waves are confined between the ocean Boor and surface. The

scattered wave may be decomposed into infinite number of normal modes,

some of which propagate whereas the others evanesce. This fact makes it

much more difficult to calculate the scattered wave and its far-field pattern

than it was in the infinitely deep ocean.

Based on the representation formula �.13! and the unique solvability of

the exterior Dirichlet problem, we are led to consider a Fredholm integral

equation of the second kind, namely [3]



3.1 An approximation to the starting field

We assume that 0 is contained in a cylinder D,:=   x, z! E Rt, z, < z <

z2, ~ x I< a! where max  zq � zq, a! is much smaller than h, the ocean

depth. For  x,z! close to 0, for instance,  x, z! E OD� in view of �.12!,

we know

�.2!G z,j,~ x �  !!
4x

which, moreover, may be expanded as  cf. [5]!

G z, j, ~ x �   I! ik P P j� kp!Y� g',8'!h'� kr!Y� $,8!, �.3!
+=0 m= � n

for p<r,

where we denote  x, z! by  r, $,8!,   , 1',! by  p, P',8'!, 0 < 4 < ~, 0 < 8 <

2x and

�n+ l! n � i ! i!. [ I i y
4~ n+ ! m ~!t

�.4!

are the surface harmonics.

Hence, for  r, $,8! close to 80, we can express the starting field u' as

Bv
u' x,z! = � G der

� ik Q Q e �h'� kr!P� cosg!e' �.5!

12

be accomplished by using the asymptotic behavior of the Green's function

G z,  , ~ x �   ~! for points close to and far away from the object. To this

end, we present a "matching" scheme in which the starting field and the

propagating field are matched using a minimization procedure to obtain an

approximate far-field pattern .



where the a �are constants which a.re to be determined.

Now let ui be a given incoming wave, with the representation
1V

i  g ! P y   ! ika�rcoa B � o!
n=0

W

= P c p  = + reoSQ!e k " ~ ~

u', x, z! = P Q o �h', kr!P� 'cosP!e' �.7!
~=0 m= � n

then the o~� n = 0, 1, ..., X~, m = 0, +1,.�, kn! can be approximated by

the minimization procedure:

min Ilu' � uiIlvtani �.8!

where II Ilv ao! is a suitable norm on BA.

3.2 A program to determine the a

In this section, we present a program to minimize �.8! in the I  BO! norm,

i.e.

~i:= min I u' x, -! � u' x,z! I do..
~mrs sn

Suppose 0 is starlike, i.e. that BA can be represented as

then �.9! becomes

13

Here N is [�kb � x!/2z j, a is the given angle of incidence for the incoming

wave, 0 < o < 2r, and the c� n=0,1,...,N! are given coefficients.

Since ui + u' = 0 on BQ, if we approximate u' by u'�
X!



Since

~ u' r 8, P!,8, P! � u' r 8,4!,8, P! ~

o �h'� kr!P� cosg!e'
n=O m= � m

  +  8 4 ! y! iko�r 8,$!siogcos 8-aj ~2
n=O

[P Q   1 41 2 A2 ! B ]2

K! n

+[+ P  a' A' +a' A' ! � B,]'
a= 0 m= � n

where

A �= Be h'� kr 8, g!P I cong!e' j,

A = Im h' kr 8 y!PI 1 co8$!e* j,

+  8 y! y! sko�r 8,$!saagcos  � ! j

B = Im  Q c�P� zo + r 8, P!cosy!ei" """""'-" ' j.
n=O

Vl{8,$! = E g  u~�A~�� a~�A~�! � Bl �.12!
n=O m= � n

V2 8,$! = Q Q  a' A' +n A' ! � B2.
+=0 m= � n

By using the numerical quadrature

f ear 2' ~2 J 2L 1

0 0
 .!r singd8dg = [P P  .!r  8 Pp!s2nfp],

JL 0 0

14

Here the c� n = 0, 1, ..., N!, are given complex numbers, o is a given real

number, and r 8, p! is a real function for 0 < 8 < 22', 0 < p < m..

Let us denote certain sums appearing above as

Xz e



we are then able to reformulate our minimization problem as

J 2I � 1

Z E   <1 ~qi 4p!j'+ FQ ~qi 4'p! j'!r2 ~q~ 4p!""4p
a> �,o>�JL P=

j 2L � 1

=:,~n, E E [fi ~ 4 !j'+[f2� 4.!j'!
~mrs' !mn ~0 q Q

�.>5!

where

f. ~�0,!:= ~ ~�4,!r ~,: 0,! ~4�
~JL

�,16!

+io2 0<n<N�� n m<n

are found,

3.3 Some test examples

A Fortran program based on the above scheme has been written.  See

appendix!.

As a test for the starting Beld part of the program, we solve two problems

with known boundary data and analytic solutions.

a! Let h=10, k=2, n = { x,=!;I x I'+ z-5!'=1!,

hp�!Pp  co8$! oA A

then the analytic solution is

u' = ho�r!PO cosg!, for r > 1;

i.e. a ! ! � � 1, a �= 0, for m j 0 or n g 0.

15

In the next subsection we present a program to provide functions f~ and

f2. A minimization subroutineis then used to produce o �and o �, and

hence,



The numerical result:

b! Let h=20, k=2, 0 =   x, z!> ~ x I + z � 10! = 1!,

u' = h,'  !P,  cong! + h'  � !P' cosP!e'~, on 0

then the analytic solution is

tc: lip�  !Py  cosP! + h~  !P~  cosP!e', f or r ! 1

i.e. aoq � � 1, aqua � � 1, a �= 0, for other m, n.

The numerical result:

16



4 A Numerical Scheme to Match the Start-

ing Field. with the Propagating; Field

4.1 A minimization matching scheme

In view of �.11!, we know that for ~ x ~! ap, where ap � � min a: D, 3 Oj,

the scattered solution can be written as

Bzlu' x, z! = � J G � da
an Bv

P �y� z!a' Za�.!. -' �.1!
«=0 m=-oo

0 by an incoming wave u' may be approximated by

Ng

u', x,z! = Q Q o �h'� k
«=0 m=-«

z � zppfmf imH �.2!

0   8 < 2', 0 < < h.

Here Nz is a chosen positive number, and the n �have been determined

in section 3.2.

17

where Pm�Q C, for n = 0, 1, ..., oo, j = 0, +1, ..., +oo, are constants which

might be computed from boundary data on M .

Instead of repeating the method of Section 3, we use a optimal scheme to

determine P �by matching the "starting field" to the "propagating field"

on a suitable surface I'. I' is chosen conveniently to lie in the intersection

of the region corresponding to the starting field and propagating fields.

Suppose that I' may be parametrized as   r,8, z!: r = r 8, z!, 0 < 8 <

2m, 0 < z < h!, from �.7! we know that the starting field u' scattered off



I et u' be an approximation to the propagating solution,

hX

u', x, z! = Q P P �P� z!H'  ka�r!e' �.3!
v=0 m=-hf

then

Hence, we can determine P �by

min I! u' x, z! � u', x, z! llv r!
P~~

Again here ~~ . ~~v<r> is a suitable chosen norm on I'. Since the approximate

starting field is in all likelihood closer to the actual starting field when  x, z!

is near 0 and away from the oceansurface and bottom, this suggests we use

a weighted norm to emphasize those points near A.

Recall that we assumed that 0 C D, =   x, z! 6 R>, zi < z < zz! ~ x j<

a!; hence, we consider the minimization problem with weighted L -norm

h 2s

min ~ s'� x, z! � s' x, z! ~ m z,8!r 8, z!d8dz,
0 0

where w z! is chosen to emphasize points near A. If we choose I' to be the

cylinder

I':=   r,8, z!; r = a, 0   8 < 2m, 0 < z < hj,

and the weight to be given as

1 ifzi <z<zz
0 if0<z<zi, ozzie <z<h,

the situation is quite easily implimented. A slightly more complicated situ-

ation is to choose m as a discrete measure having points concentrated near





Denoting

U~z{Hp> zq! ' J~{kG>r{Hp> zq!!cosmHp Y~ kc~r Hp> zq!!82nmHp � 10!

for m = � M,..., � 1,0,1,...,M; n = 0,1,...,Nz

 p = 0,1, ..., mz, q = 0,1, ..., mg!

then leads to

m~ mg

F a! = min  g g r H�, z,!tu H, z !
P mym2 Q Q

M

[{P P  P U � 8,z! � P V�{8 !!P z! � C{8 z!!
n=0 m= � M

Wg M

+ P P  P'�V � H�z,!+P'�V � H�z,!!y� z,! � C, 8�,z,!!']!
~=0 m= � elf

7A ! P42

E E [ei  p! q!]'+ [»  p! zq!]'! ~
Pmn,Pmnq Pp P

�.1a!

where

9  H. ! = [  H. !~ H..!]'"
mf mz

M

[P P  P�'�U�� H�z,! � P'�V � H�.,!!y� .,! � C, H�z,!] �.13!

» e�,,! = [ " r H�...!~ H�,z,!]'I'
my my

M

[ P P  P �V � H�,z !+P �U � H�,z !�'  z ! � C  H,z !] �14!
~=0 m= � M

By calling the minimization subroutine, we compute P' �and P �, and

hence also

P �= P' �+ iP'., 0 < n < N�� M < m < M.

90

V~�{Hp, zq!:= Y~ ka�r Hp,zq!!cosmHp+ J~{ka�r{Hp, zq!!sinmHp �.11!





Example 2: Let h=10, k=2, and the matching surface I' =   r, 8, z!; r =

10, 0 < 8 < 2x, 0 < z   h]. The starting field has the known data on I' as:

u', x, z! = H,'  kair!P> z!e' + Ho  kagT�q z!, 0 < 8 < 2', 0 < z < 10

The analytic solution to this problem is

u'. x, z! = H,' ka>r�> z!e" + H,' ka>r�> z!,

0<8<2<,OC <10, r�.

i.e. Test result:

22



5 Some examples of the approximate prop-
agating far-fieM pattern

As shown in the previous section, an approximate propagating field can be

written as:

u' x, z! = Q Q P �$� z!H '  ka r!e'  S.1!
m=0 re= � Jlf

for r > al!.

H�!  ka�r! =   !i
 -i m+ [! zeikanr + 0  !2 1

krra�r rsl2 � 2!

asr~oo, for n=0,1,...,N;

� kfa fr

H '  ka�r! = 0  iI2 !pr'
�.3!

asr~oo, forn>N.

Hence,

M

U' x, ! P g P   !' 'e ' > 4""'4  z!e"
n=0 m=- M -xa rn

1+0  > !, asr~oo.  S.4!

In view of �.14!, the approximate propagating far-field pattern is

F 8, z, k!:= Q f� 8, z, k!

hf

2 P  ~>! 'e ' 0  z!e'"'
n=0 m=-M

 s.5!

23

where N2 > X and N is the number of propagating modes. Now let r ~

oo, we will approximate the propagating far-field pattern from the above

formula. It is well known that H~'~ ka�r! has the asymptotic behavior



5.1 Some numerical examples of far-fieM pattern

Now we present some numerical examples from our computation. Figure 1

and Figure 2 show a comparison of the theoretical result and computational

result for a simple scatterer � cylinder. Figure 3 and Figure 4 shows the far

field patterns of two special objects that can be represented as r = r H, z! !

0 for 0 < 6 < 2~, 0 < z < h. These far field patterns are using in an inverse

scattering problem to recover the shapes of the objects. [10]

Figure 5 to Figure 12 are examples of far field patterns. They will be

used in our investigation of under water inverse scattering problem as input

data.
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Figuxe 2:
Object:

r=5, 0 z h,, 0<8�r;

Iacoming, wave:

a a

e' = g Q i J  ka�r!P�e'"';
a=O m=-3

&= 4.084, h =5;



Figure 3:
Object:

~ = S~i~ ~~ jh!+ 2, O «< h, 0 < e < ~~;

Incoming m ave:

$3

i" J  ka�r!P�e'~~,
a=0 re=-3

1=40S4, h=S;



Fqpze 4:
Object:

r = Sz h � z! jl6+ 3, 0   z < h, 0 < 8 < 2x;

Iacomiag wave:

i"J  ka�r!P�e'

k=4.084, h=5;



Figure 5:
Object:

p=0.125� � cow g!, 0<  <x, 0 8<2+;

Inc orniag wave:



Figure 6:
Object:

p = O.l25� � cos g!� � cow 8!, 0   rj < x, 0 < 8   2'; 0   8   2x

Incoming wa,ve:
i e x i>so<~i t!.Tl = Syph

k = 2.7, h � 5 ip � 2.5.



Fjpue 7'
Object:

p = 0.125� � cos Q!, 0   @   ~, 0   e   2~;

Incoming wave:
i g~ ikoqrcyr f!.

qe

k = 2.7, h = 5, zp = 2.5.
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Figure 8:
Object:

p = 0.125� � cos g!, 0   Q < x, 0 < 8   2z;

looming wave:
'I 5~ 'l&0$ Tcof {0!,

1

k = 2.7, h = 5, za = 2.5.
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Figure 9:
Object:

p=], 0< !< m', 0<$<2x;

Incoming wave:

k = 5.34, h = 5, zp = '2.5.
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Figure 10:
Object.

p = 0 125� � cos 8!, 0 < 8 < 2x., 0 < 8 < 2x;

Incoming wave:



Figure ll:
Object:

Incorrung wave:
i e z ikssrcos 8- w/2!,o =5ye

p = 4.06, h = 5, ~< � � 2.5.
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Figure 12:
Object:

Incoming wave;

LC
K~K ~

Ik4> TQ74 �! .
e = use

k = 4.06, h = 5, = 2.5.


